Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 14 de 14
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
researchsquare; 2023.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3689322.v1

Résumé

The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of herd immunity. Here, we isolate spike binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. 28 potent antibodies were isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5 SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called ‘FLip’mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.

2.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.09.14.557399

Résumé

Viral entry is mediated by oligomeric proteins on the virus and cell surfaces. The association is therefore open to multivalent interactions between these proteins, yet such recognition is typically rationalised as affinity between monomeric equivalents. As a result, assessment of the thermodynamic mechanisms that control viral entry has been limited. Here, we use mass photometry to overcome the analytical challenges consequent to multivalency. Examining the interaction between the spike protein of SARS-CoV-2 and the ACE2 receptor, we find that ACE2 induces oligomerisation of spike in a variant- dependent fashion. We also demonstrate that patient-derived antibodies use induced-oligomerisation as a primary inhibition mechanism or to enhance the effects of receptor-site blocking. Our results reveal that naive affinity measurements are poor predictors of potency, and introduce a novel antibody-based inhibition mechanism for oligomeric targets.

3.
researchsquare; 2023.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2684849.v1

Résumé

Commercially developed monoclonal antibodies (mAb) have been effective in the prevention or treatment of SARS-CoV-2 infection1-3 but the rapid antigenic evolution of the Omicron sub-lineages has reduced their activity4-8 and they are no longer licensed for use in many countries. Here, we isolate spike binding monoclonal antibodies from vaccinees who suffered vaccine break-through infections with Omicron sublineages BA.4/5. We find that it is possible for antibodies targeting highly mutated regions to recover broad activity through allosteric effects (mAb BA.4/5-35) and characterise a pair of potent mAbs with extremely broad neutralization against current and historical SARS-CoV-2 variants. One, mAb BA.4/5-2, binds at the back of the left shoulder of the receptor binding domain (RBD) in an area which has resisted mutational change to date. The second, mAb BA.4/5-5, binds a conserved epitope in sub-domain 1 (SD1). The isolation of this pair of antibodies with non-overlapping epitopes shows that potent and extremely broadly neutralizing antibodies are still generated following infection and SD1 directed mAbs may increase the resilience of mAb therapeutics/prophylactics against SARS-CoV-2.


Sujets)
COVID-19
4.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.07.14.500063

Résumé

Summary Some COVID-19 patients are unable to clear their infection or are at risk of severe disease, requiring treatment with neutralising monoclonal antibodies (nmAb) and/or antivirals. The rapid roll-out of novel therapeutics means there is limited understanding of the likely genetic barrier to drug resistance. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to the detection of emerging drug resistance. Here we report the accrual of mutations in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the epitopes of the respective nmAbs. For casirivimab+imdevimab these are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Sujets)
COVID-19
5.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.05.21.492554

Résumé

The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.

6.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.12.03.471045

Résumé

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced. Omicron contains a total of 30 substitutions plus deletions and an insertion in Spike, far more than any previously reported variant. The mutations include those previously identified by In-vitro evolution to contribute to high-affinity binding to ACE2, including mutations Q498R and N501Y critical in forming additional interactions in the interface. Together with increased charge complementarity between the RBD and ACE2, these substantially increase affinity and potentially virus transmissibility through increased syncytia formation. Further mutations promote immune evasion. We have studied the binding of a large panel of potent monoclonal antibodies generated from early pandemic or Beta infected cases. Mutations in Omicron will likely compromise the binding of many of these and additionally, the binding of antibodies under commercial development, however residual binding should provide protection from severe disease.

9.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.13.249177

Résumé

Large trimeric Spikes decorate SARS-CoV-2 and bind host cells via receptor binding domains (RBDs). We report a conformation in which the trimer is locked into a compact well-ordered form. This differs from previous structures where the RBD can flip up to recognise the receptor. In the locked form regions associated with fusion transitions are stabilised and the RBD harbours curved lipids. The acyl chains bind a hydrophobic pocket in one RBD whilst the polar headgroups attach to an adjacent RBD of the trimer. By functional analogy with enteroviral pocket factors loss of the lipid would destabilise the locked form facilitating receptor attachment, conversion to the postfusion state and virus infection. The nature of lipids available at the site of infection might affect the antigenicity/pathogenicity of released virus. These results reveal a potentially druggable pocket and suggest that the natural prefusion state occludes neutralising RBD epitopes, achieving conformational shielding from antibodies. HighlightsO_LISARS-CoV-2 Spike can adopt a locked conformation with all receptor binding domains (RBDs) down, likely to represent the prefusion resting state C_LIO_LIThis locked conformation is compact and stable, braced by lipid bound within a potentially druggable pocket C_LIO_LIKey neutralization epitopes are shielded in the locked form C_LIO_LILoss of lipid may trigger a cascade of events that lead to cell entry analogous to the role of lipids in enterovirus cell entry C_LI


Sujets)
Infections à virus oncogènes
10.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.06.12.148387

Résumé

The COVID-19 pandemic has had unprecedented health and economic impact, but currently there are no approved therapies. We have isolated an antibody, EY6A, from a late-stage COVID-19 patient and show it neutralises SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds tightly (KD of 2 nM) the receptor binding domain (RBD) of the viral Spike glycoprotein and a 2.6[A] crystal structure of an RBD/EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues of this epitope are key to stabilising the pre-fusion Spike. Cryo-EM analyses of the pre-fusion Spike incubated with EY6A Fab reveal a complex of the intact trimer with three Fabs bound and two further multimeric forms comprising destabilized Spike attached to Fab. EY6A binds what is probably a major neutralising epitope, making it a candidate therapeutic for COVID-19.


Sujets)
COVID-19
11.
researchsquare; 2020.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-32948.v1

Résumé

The SARS-CoV-2 virus is more transmissible than previous coronaviruses and causes a more serious illness than seasonal flu. The SARS-CoV-2 receptor binding domain (RBD) of the Spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor as a prelude to viral entry into the cell. Using a naïve llama single chain nanobody library and PCR maturation we have produced a nanobody, H11-D4, with a KD 9 nM for RBD that blocks the binding of RBD to the ACE2. Single particle cryo-electron microscopy revealed that H11-D4 binds to each of the three RBDs in the Spike trimer. The 1.8 Å crystal structure of the H11-D4 – RBD complex has illuminated the molecular interactions that drive the high affinity. H11-D4 binds to an epitope on RBD that overlaps with the ACE2 binding, explaining the blocking of ACE2 binding. The nanobody showed potent neutralising activity against live SARS-CoV-2 virus.

12.
ssrn; 2020.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3613273

Résumé

There are as yet no licenced therapeutics for the COVID-19 pandemic. The causal coronavirus (SARS-CoV-2) binds host cells via a trimeric Spike whose receptor binding domain (RBD) recognizes angiotensin-converting enzyme 2 (ACE2), initiating conformational changes that drive membrane fusion. We find that monoclonal antibody CR3022 binds the RBD tightly, neutralising SARS-CoV-2 and report the crystal structure at 2.4 A of the Fab/RBD complex. Some crystals are suitable for screening for entry-blocking inhibitors. The highly conserved, structure-stabilising, CR3022 epitope is inaccessible in the prefusion Spike, suggesting that CR3022 binding would facilitate conversion to the fusion-incompetent post-fusion state. Cryo-EM analysis confirms that incubation of Spike with CR3022 Fab leads to destruction of the prefusion trimer. Presentation of this cryptic epitope in an RBD-based vaccine might advantageously focus immune responses. Binders at this epitope may be useful therapeutically, possibly in synergy with an antibody blocking receptor attachment.Funding: This work was supported by a grant from the CAMS-Oxford Institute to D.I.S. E.E.F and J.Ren are supported by the Wellcome Trust (101122/Z/13/Z), Y.Z. by Cancer Research UK (C375/A17721) and D.I.S. and E.E.F. by the UK Medical Research Council (MR/N00065X/1). J.H. is supported by a grant from the EPA Cephalosporin Fund. PPUK is funded by the Rosalind Franklin Institute EPSRC Grant no. EP/S025243/1. The National Institute for Health Research Biomedical Research Centre Funding Scheme supports G.R.S. together with the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Science (CIFMS), China (grant number: 2018-I2M-2-002), which also supports D.I.S. G.R.S. is also supported as a Wellcome Trust Senior Investigator (grant 095541/A/11/Z). T.M. is supported by Cancer Research UK grants C20724/A14414 and C20724/A26752 to Christian Siebold. This is a contribution from the UK Instruct-ERIC Centre. The Wellcome Centre for Human Genetics is supported by the Wellcome Trust (grant 090532/Z/09/Z). Virus used for the neutralisation assays was a gift from Julian Druce, Doherty Centre, Melbourne, Australia. Conflict of Interest: The authors declare no competing interests.


Sujets)
Mucopolysaccharidose de type I , Hépatite E , COVID-19
14.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.05.05.079202

Résumé

There are as yet no licenced therapeutics for the COVID-19 pandemic. The causal coronavirus (SARS-CoV-2) binds host cells via a trimeric Spike whose receptor binding domain (RBD) recognizes angiotensin-converting enzyme 2 (ACE2), initiating conformational changes that drive membrane fusion. We find that monoclonal antibody CR3022 binds the RBD tightly, neutralising SARS-CoV-2 and report the crystal structure at 2.4 [A] of the Fab/RBD complex. Some crystals are suitable for screening for entry-blocking inhibitors. The highly conserved, structure-stabilising, CR3022 epitope is inaccessible in the prefusion Spike, suggesting that CR3022 binding would facilitate conversion to the fusion-incompetent post-fusion state. Cryo-EM analysis confirms that incubation of Spike with CR3022 Fab leads to destruction of the prefusion trimer. Presentation of this cryptic epitope in an RBD-based vaccine might advantageously focus immune responses. Binders at this epitope may be useful therapeutically, possibly in synergy with an antibody blocking receptor attachment. HighlightsO_LICR3022 neutralises SARS-CoV-2 C_LIO_LINeutralisation is by destroying the prefusion SPIKE conformation C_LIO_LIThis antibody may have therapeutic potential alone or with one blocking receptor attachment C_LI


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche